VASAVI COLLEGE OF ENGINEERING (Autonomous) HYDERABAD
B.E. I/IV (All Branches) I-Semester(Main) Examinations, Feb. 2015

Mathematics-1

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B
Part-A (Marks: 10×2=20)

1. Determine the values of λ for which the following system of equations may possesses non- trivial solution. $3 x_{1}+x_{2}-\lambda x_{3}=0,4 x_{1}-2 x_{2}-3 x_{3}=0,2 \lambda x_{1}+4 x_{2}+\lambda x_{3}=0$.
2. Are the following vectors linearly dependent? If so, find the relation between them.

$$
X_{1}=(1,3,2), X_{2}=(5,-2,1), X_{3}=(-7,13,4)
$$

3. Examine the convergence of the series $1+\frac{1}{4^{2 / 3}}+\frac{1}{9^{2 / 3}}+\frac{1}{16^{2 / 3}}+\ldots$
4. State Cauchy's root test. Test the convergence of the series $\sum \frac{1}{5^{n}}$.
5. Find the radius of curvature at the origin for the curve $y-x=x^{2}+2 x y+y^{2}$
6. Write the relation between envelope and evolutes. Find the envelope of the family of straight lines $y=m x+\frac{a}{m}$, where ' m ' is arbitrary constant and ' a ' is a constant.
7. If $u=\log \left|x^{3}+y^{3}+z^{3}-3 x y z\right|$ then calculate $u_{x}+u_{y}+u_{z}$
8. Find the percentage error in the area of a rectangle, when an error of 1 percent is made in measuring it's length and breadth
9. Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)+\left(1-y^{2}\right)}}$.
10. Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{x} \log z d z d x d y$

Part-B (Marks: 50)
11. a) Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, hence compute A^{-1}.
b) For what values of ' k ' the equations $x+y+z=1,2 x+y+4 z=k, 4 x+y+10 z=k^{2}$ have a solution and solve them completely in each case.
12. a) Discuss the convergence of the series
$1+\frac{\alpha \beta}{1 \gamma} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{1.2 \cdot \gamma(\gamma+1)} x^{2}+\frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1.2 .3 \cdot \gamma(\gamma+1)(\gamma+2)} x^{3}+\ldots$
b) Test the convergence of the series $\sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{p}}, \quad \mathrm{p}>0$.
13. a) If ρ_{1} and ρ_{2} are radii of curvature at the extremities of a focal chord of a parabola, whose semi lotus rectum is ℓ. Prove that $\left(\rho_{1}\right)^{-2 / 3}+\left(\rho_{2}\right)^{-2 / 3}=(\ell)^{-2 / 3}$.
b) Trace the curve $(a-x) y^{2}=x^{2}(a+x)$.
14. a) Find $\frac{d y}{d x}$ if $x^{y}+y^{x}=(x+y)^{(x+y)}$.
b) If $x=u(1-v), y=u v$ then prove that $J J^{\prime}=1$.
15. a) Evaluate $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Solve $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2-x} x y^{2} d y d x \quad$ by changing the order of the integration.
16. a) Reduce $8 x^{2}+7 y^{2}+3 z^{2}-12 x y+4 x z-8 y z$ into Canonical form by Orthogonal transformation. Hence find Rank, Index and Signature of quadratic form.
b) Expand $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$ in powers of x.
17. a) A rectangular box open at top is to have volume of 32 cubic ft . Find the dimensions of the box requiring least material for its construction.
b) Find the volume of the solid obtained by revolving one arc of the cycloid $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ about X -axis.

